Extending the reach in an HPS-style experiment

Matt Graham SLAC National Accelerator Laboratory Snowmass 2013: NLWCP Parallel Session Wednesday, July 31, 2013

Where we (almost) are

Where we want to go.

I have a heavy HPS bias!

Commissioning Run (dashed):

1 week with 50nA @ 1.1 GeV 1 week with 200nA @ 2.2 GeV

Production Run (solid):

2 weeks with 200nA @ 2.2 GeV 2 weeks with 450nA @ 6.6 GeV

The HPS Detector

SVT: 6 double layers of singlesided Si string: small and

sided Si strips; small angle stereo pairs

X=0.7/X₀% per double layer

Buttons to push on an HPSish experiment

- Mass resolution
 - Thinner detectors; larger BxL
- Vertex resolution
 - thinner detectors (first few layers), decrease distance from target to L1
- Acceptance
 - bigger detector (high mass); smaller deadzone (low mass)
- Integrated luminosity
 - higher current; thicker target; longer runtime
- Add in muons and pion
 - new detector downstream of tracker, \$\$
- Lower Z target
 - increase cross-section at mass > 500MeV

There are trade offs here...some just \$\$\$ (muon detector), but some in the reach as well

For this talk, I'm assuming that the technical challenges have been conquered (i.e. we have thin, fast pixels);

Mass resolution improvements for bump-hunt region

Improving mass resolution effectively reduces the background under the "bump"—reach scales like $sqrt(\sigma)$

- momentum resolution→ material throughout whole tracker & JL×B
- angular resolution → material in first few layers

Through some combination of these, I'll say we could potentially achieve an improvement by x4...this may be crazy!

Vertex & Mass resolution in the vertexing region

Vertexing reach region, very different from bump-hunt ... effectively a 0 bkg search.

Optimal vertex position cut at the edge of a steep exponential tail.

Improving mass resolution \rightarrow reduces entire bkg distribution \rightarrow *very little effect on reach* Improving vertex resolution \rightarrow reduces slope of bkg distribution \rightarrow *large effect on reach*

Increasing the luminosity

- Three ways to increase the integrated luminosity
 - run longer: take 3 months/energy (roughly 6x beam time now)
 - increase current: up by \sim x5 but with some loss in vertexing efficiency due to higher occupancy in L1; probably need a sophisticated target;

• increase target thickness: let's say x2; more MS in target→higher

occupancy;

• Remember, this is a 10 year plan!

Muons & Pions & 11GeV

- Try to increase reach at mass>500GeV ("Mount Rho")
 - Add a muon/pion detector to fight loss of branching fraction
 - Run at higher energies: max JLAB will be 11GeV...
 - Lower Z target: next slide (not included in this reach)

High A' Mass→Low Z Target

P. Schuster & N. Toro

R dies at higher mass...

BUT it dies more slowly for lighter nuclei...for a Be target, get x10 at 1GeV compared to W (haven't included this in reach yet, but it's a very good idea!)

 $R = \chi X_0 N_0 / A$ "A' production efficiency"

Put it all together: SuperHPS' II

4x mass resolution
2x vertex resolution
60x integrated luminosity

Put it all together: SuperHPS' II

4x mass resolution
2x vertex resolution
30x integrated luminosity
(including 11GeV)

We close *Mont's Gap*!
Dig into *Mount Rho*and lighter targets will help! *Beam-Dump Valley* is starting to get covered...high power beam dumps probably the way to go.

Summary

- I've tried to sketch out the territory here...and that's all, just a sketch. Many details and technical challenges would need to be worked out/overcome to see this.
- That said, I don't think it's too crazy...the best thing we can do is run longer (easy, considering nominal HPS has only 6 weeks of beam time allotted right now) and harder (harder, but also probably feasible)
- Mix this with Tim's beam-dump (great for very low coupling & high mass) and double-armed spectrometer ideas (what does this look like for 11GeV?)
- Us fixed target folks never look beyond 1 GeV; left this to the B-Factories. There's a good reason for this: we don't have the beam for it...need CEBAF-24 GeV (or more)!

